Systems thinking

Systems thinking is the process of understanding how things influence one another within a whole. In nature, systems thinking examples include ecosystems in which various elements such as air, water, movement, plants, and animals work together to survive or perish. In organizations, systems consist of people, structures, and processes that work together to make an organization healthy or unhealthy.

Systems Thinking has been defined as an approach to problem solving, by viewing "problems" as parts of an overall system, rather than reacting to specific part, outcomes or events and potentially contributing to further development of unintended consequences. Systems thinking is not one thing but a set of habits or practices[2] within a framework that is based on the belief that the component parts of a system can best be understood in the context of relationships with each other and with other systems, rather than in isolation. Systems thinking focuses on cyclical rather than linear cause and effect.

In science systems, it is argued that the only way to fully understand why a problem or element occurs and persists is to understand the parts in relation to the whole.[3] Standing in contrast to Descartes's scientific reductionism and philosophical analysis, it proposes to view systems in a holistic manner. Consistent with systems philosophy, systems thinking concerns an understanding of a system by examining the linkages and interactions between the elements that compose the entirety of the system.

Science systems thinking attempts to illustrate that events are separated by distance and time and that small catalytic events can cause large changes in complex systems. Acknowledging that an improvement in one area of a system can adversely affect another area of the system, it promotes organizational communication at all levels in order to avoid the silo effect. Systems thinking techniques may be used to study any kind of system — natural, scientific, engineered, human, or conceptual.

Contents

The concept of a system

Science systems thinkers consider that:

A holistic system is any set (group) of interdependent or temporally interacting parts. Parts are generally systems themselves and are composed of other parts, just as systems are generally parts or holons of other systems.

Science systems and the application of science systems thinking has been grouped into three categories based on the techniques used to tackle a system:

The systems approach

The systems thinking approach incorporates several tenets:[4]

Some examples:

  • brake disks or drums
  • brake pedal sensors
  • hydraulics
  • driver reaction time
  • tires
  • road conditions
  • weather conditions
  • time of day
  • a "profit making system" from the perspective of management and owners
  • a "distribution system" from the perspective of the suppliers
  • an "employment system" from the perspective of employees
  • a "materials supply system" from the perspective of customers
  • an "entertainment system" from the perspective of loiterers
  • a "social system" from the perspective of local residents
  • a "dating system" from the perspective of single customers

As a result of such thinking, new insights may be gained into how the supermarket works, why it has problems, how it can be improved or how changes made to one component of the system may impact the other components.

Applications

Science systems thinking is increasingly being used to tackle a wide variety of subjects in fields such as computing, engineering, epidemiology, information science, health, manufacture, management, and the environment.

Some examples:

See also

Bibliography

References

  1. ^ Illustration is made by Marcel Douwe Dekker (2007) based on an own standard and Pierre Malotaux (1985), "Constructieleer van de mensenlijke samenwerking", in BB5 Collegedictaat TU Delft, pp. 120-147.
  2. ^ http://www.watersfoundation.org/index.cfm?fuseaction=materials.main
  3. ^ Capra, F. (1996) The web of life: a new scientific understanding of living systems (1st Anchor Books ed). New York: Anchor Books. p. 30
  4. ^ Skyttner, Lars (2006). General Systems Theory: Problems, Perspective, Practice. World Scientific Publishing Company. ISBN 9-812-56467-5. 

External links